
Williams, Hopper, Stanton

1

Abstract— We present a novel, Java-based add-on

to the Korat exhaustive testing framework. Our

utility dynamically determines the structure and sub-

structures of a class under test and then presents an

interactive visual representation. This representation

permits a software tester to graphically constrain the

number of member variables created by Korat’s

finitization process. Finally, our extension textually

presents the generated valid input structures. We

believe our implementation to be novel and

beneficial in that it (1) uses the Java reflection API

to generate a treeview of the decomposed test

structure (including contained sub-structures), (2)

allows a tester to visually constrain the number,

nullability, and value of objects generated and (3)

visually depicts the finitization space created in a

hierarchical manner. Most significantly, the ability

we provide to refine the input parameters to the

finitization method enables the tester to readily

control test scope. In the last section of this paper we

use our graphical adaptation to test a data structure

similar to that in use at a large financial institution.

I. INTRODUCTION

HE Korat algorithm is used to exhaustively, but

parsimoniously, generate all legal object

configurations within a user-defined size for linked

complex data structures [1][2]. Korat generates valid

test inputs by iterating through a state space of

candidates. Only those candidates returning

affirmatively from a class invariant method (the

repOK) are considered valid inputs for use in testing.

 Korat is singular in its ability to quickly and

exhaustively generate test inputs given a user-

specified bound on the size of inputs, the scope.

Korat conservatively generates test inputs by

avoiding the duplication of entities whose

members form identical structural graphs

(isomorphs) but differ only in terms of identity. It

does this by imposing a natural partial order on

fields, and tracking accesses made thereto by the

class invariant. In the following sections of this

paper we first address the motivations of our

project. Next we discuss our understanding -- and

the importance of -- the object field and class

domain data structures in Korat. We follow this

coverage by addressing the details of our

implementation of Korat and our visual

finitization editor. Finally, we test our efforts

against a real-world data structure used in a

national financial services firm.

II. PROJECT MOTIVATIONS

In consideration of Korat’s power and speed, we

chose to develop a graphical, Java-based, add-on

tool to facilitate a tester’s ability to quickly (1)

identify through a visual decomposition (treeview)

the structure and sub-structures of a class to be

tested by Korat (2) specify using the very same

treeview the number of contained objects in the test

structure to create (3) specify a numeric range of

values that each field containing primitive data types

can assume (4) specify whether contained object(s)

can be null and (5) generate a resultant text-based

list of Korat-created candidates passing the repOK

method. Our primary motivation for constructing

this extension was to permit the tester to quickly

change those inputs that govern the size of the state

space our Korat finitization method constructs.

Moreover, by providing an interactive visual

depiction of the structure under test, we hoped a

novice tester might more easily decipher its

composition. We textually output valid candidates to

aid further the tester’s comprehension by means of

visual feedback.

A Graphical Parameter-Based Finitization

Generator for the Korat Algorithm
T. Williams, C.H.Hopper, M. Stanton

T

Williams, Hopper, Stanton

2

[0]

[1]

[2]

[3]

node0, node1, node2

NullClassDomain

Index: 0

NodeClassDomain

Index: 0

NodeClassDomain

Index: 1

NodeClassDomain

Index: 2

null

node0, node1, node2

node0, node1, node2

[0] [1] [2]

[0]

[0] [1] [2]

[0] [1] [2]

Class Domain

Index[]

For

ObjField

Root

ClassDomains

III. A SELECTIVE LOOK AT KORAT

As our investigation depended upon our thorough

understanding and successful implementation of the

Korat algorithm, and given that its source code is not

publicly available, we spent considerable time

authoring our interpretation of the algorithm. We

used the pseudo-code presented in [2] as a starting

point for this endeavor. Readers should note that we

do not provide a comprehensive analysis of Korat,

instead referring readers to the Korat author’s texts

in [1] and [2] to elucidate completely the algorithm’s

details.

We began our investigation by stepping through

our conceptual interpretation of the algorithm using

pencil and paper. After hand-generating more than

one hundred candidates in the iterative/backtracking-

based fashion described in the paper, we next turned

our attentions to understanding the mechanics of

creating/initializing and then moving through the

state space.

Fundamental to Korat is the concept of an “Object

Field.” There is an ObjectField for each member

variable in the test structure and the sub-structures it

contains. The state space from which valid

candidates emerge is a mapping of each and every

ObjectField to an array of ClassDomainIndex(es). Korat-

generated candidates passed to the repOK method

are partially ordered streams of ObjectFields, wherein

each position represents a particular ObjectField,

and the value thereat is an indirect pointer (that is,

an index to an index to a value) to a single object

from one or more ClassDomains.

 To understand how to generate class domains we

began by deconstructing the data structure

ClassDomainIndex. A ClassDomainIndex is, in essence, a

mechanism through which to reach a particular

instance of a class in a particular class domain. We

discovered that it is a quasi-repetitive structure

wherein each member of a class domain carries an

identical copy of the domain objects specific to a

particular domain. Differentiation occurs between

class domain indexes with identical class domains

because every class domain index has a successive

numerical index into the class domain. This

arrangement imposes a lexicographical ordering

within each of the domains. In the case of the binary

search tree we used in development (a 3-node binary

search tree), the class domain(s) for the Root

ObjectField consisted of {null}, {Node0, Node1,

Node2}. Null always forms a domain by itself. As an

example of this configuration, we present a graphical

representation of the class domain indexes for the

field tree::root in Figure 1.

Figure

1:

Class

Domain Index for Tree: Root ObjectField

 After understanding how to map object fields to

class domains, we next turned our attention to

implementing Korat in code.

IV. IMPLEMENTING KORAT AND THE VISUAL

FINITIZATION EDITOR

We chose to author our implementation of Korat

and the visual finitization construction editor in Sun

Microsystems Java J2SE 5.0 (a.k.a. 1.5.) We chose

this version because of its inherent support for

generic data types. The visual portion of our project

we authored also in 5.0, using both the JFaces and

SWT toolkits from the Eclipse Project. We selected

these libraries because their performance is vastly

superior to that of Java JFC/Swing in our target

environment, Windows. Interestingly, we

encountered a fare amount of difficulty in our

attempts to make our treeview nodes editable. Direct

support for editing nodes in the JFace API proved so

troublesome that it became a non-trivial task to force

this functionality by merging SWT routines with the

JFaces library.

Our first coding responsibility entailed the creation

of a mechanism that takes as input a user-specified

class name. It then investigates it to discern its

underlying structure. In our code, we employ

extensively the Java Reflection API to walk the

structure of the class under test, creating as we go a

list of the sub-structures contained therein. As our

Williams, Hopper, Stanton

3

program encounters each new sub-structure, the

algorithm spans into that new type and begins

decomposing it. Upon completion of this nested

crawl, control returns to the parent structure. If a

previously encountered type reappears, our program

knows not to re-visit it since there already exists an

entry for it in our type catalogue.

The results of this reflective exploration of the test

structure populate the left pane of our GUI. The

discovered structure is rendered as a collapsible

treeview [see Appendix A]. The outermost level

displays all of the data types discovered during the

crawl. In the case of our binary search tree this

includes: the binary search tree class, tree size

definition (string), node class, node info definition,

node description definition (string), and the node

comparable definition. For each encountered data

type, the tester sees the class name. In the case of

types that describe fields, the tester sees a short

name that is composed of the object’s name and the

name of the field. Data types that are numeric in

nature present min/max value boxes, into which the

tester may specify the minimum and maximum

values of objects to be create created. A cardinality

property exists for non-numeric data types. The

tester can set the cardinality to control the number of

objects to be created.

Descending inward from the first node in the

treeview (in this particular case, the binary search

tree class), the user views each field discovered in

the test class. Under each field box there appears the

field’s name and type. Furthermore, there is a box

indicating whether or not the field contains a

primitive data type, of which there are eight in the

Java language. Finally, the tester has the option to

choose whether the field permits null as a valid

value. Toggling on the null entry enables the tester

to expand his state space to include checking for

nulls. If such checking is not deemed necessary, then

he can generate a smaller scope by disabling the

inclusion of a null class domain for the selected

field’s class domain index array. These user

specifications will be consumed in the next phase by

the ObjectFieldFactory to constrain the creation of

each ObjectField and the objects in the class domains

they point to.

Clicking on the Build button initiates a three-step

process. In Phase 1, we look at every object type

appearing in the far left level of the treeview and

determine the class domains to be built. The tester-

defined cardinality values constrain the number of

objects to create for the appropriate class domain.

So, in the case of Node::Comparable, if the tester

sets cardinality to 3, then our implementation knows

to create three objects of the Comparable interface

type. Note that we will only instantiate interfaces for

which our crawler was able to find a concrete

implementation. If no such concrete implementation

is discovered, we simply set the class domain to null.

In the case of primitives, such as int, we create

objects using the appropriate object wrappers.

Actual values for these wrapper types come from the

range specified by the user in the GUI. To avoid

class domain collisions (that is, when there are two

or more unrelated fields that contain the same

datatype), we append the fieldname to the class

domain. Therefore, in the event that we were to have

a structure with two unrelated int fields, we’d know

that the values for each field came from different,

discrete ClassDomains. We treat strings in a similar

fashion – mapping each string field to a unique

ClassDomain of strings.

In Phase 2 of the build process, we create an

ObjectField for each and every field described by an

ObjectFieldFactory. In the case of the tree object, we

know to create two ObjectFieldFactor(ies) one for

root and one for size. In the case of Nodes, we know

to create Node0Left, Node0Right, Node1Left,

Node1Right, Node2Left, Node2Right, etc. We name

our fields by concatenating the class name, a

sequential number and the field name. Hence, as

seen above, we derive Node0Right.

 In Phase 3, we use the metadata defined in the

ObjectFieldFactory to determine whether a null class

domain should be added to the existing Class Domains

for each object field. Combining the information

gleaned in Phase 1, we then create our

ClassDomainIndexes mapping each and every

ObjectField to a set of class domain indexes. We add

the class domain indexes one at a time, starting with

the null class domain index (if appropriate) and then

adding the object class domains, using as our index

the order of object creation. In the case of the

Node0Left object field, we map it to one

NullClassDomainIndex with an index of 0 and then

three NodeClassDomainIndex(es) with indexes of 0

Williams, Hopper, Stanton

4

through 2. The result of this process is a finitization

space. This is two-dimensional mapping of object

fields to class domain indexes. We draw it in

hierarchical fashion in the right hand pane of the

GUI. In essence, this pane is a structured realization

of the finitization creation effort. The outermost

level of the tree depicts each and every object field

we created. Underneath each object field the user

sees every class domain index to which it is mapped.

The class domain index is depicted in the following

fashion: the pointed-to object is represented using its

Java .toString() method and its numerical index into

the class domain is shown as an integer. This

visualization shows clearly the space to be fed to the

koratSearch method. We believe this illustration to

be a novel and useful aid to enhance the tester’s

comprehension of the finitization space constructed.

After generating the finitization space, we feed it

to the koratSearch method. To successfully run the

algorithm we adapted the pseudo-code in [2]. As it

was imperative to track fields accessed during firing

of the repOK method, we modified our repOK

method to use accessor methods in our binary search

tree implementation. Our accessor methods popped a

copy of the object field on to the stack in the event it

is not already there. Although using accessor

methods was not our preferred implementation

choice, we discovered that the only way to

instrument Field accesses without using accessors

and mutators was to modify the byte code or to use

some form of proxy framework. Both of these

options were rejected due to time constraints.

In order to ensure that the entire data structure

under test is considered when checking for

isomorphs, all reachable object fields must be added

to the stack regardless of whether they were used to

determine if the class invariants were satisfied. If the

candidate is determined to be valid (or if pruning of

the state space is disabled), the data structure is

traversed to each basis field; any fields that are not

already in the stack are added.

 The bottom pane in the GUI presents the tester

with a list of all valid candidate structures meeting

the conditions of the class invariant. In the case of

the binary search tree we implemented, the results

pane displays all valid trees using the toString()

representation of each object for each of the object

fields. With isomorphism breaking turned on (it is

turned on by default) and tree size value of exactly

three, our results pane correctly display five non-

isomorphic structures. In the case where we request

all valid structures ranging from size 0 to size 3, the

results pane displays 15 valid candidates.

V. AN ANALYSIS FROM THE FINANCIAL SERVICES

DOMAIN

One of our central objectives in implementing

Korat is to apply it to a ‘real-world’ data structure.

We have therefore defined a simplified version of a

loan application, similar to that in use at a large

financial institution. This class consists of an id, a

set of applicants, a state (either complete or

incomplete), a status (either pre-submitted,

submitted, decisioned, or fulfilled), and an approved

amount ($0.00 for declined/undecisioned

applications, otherwise the amount of the loan).

For the purposes of this exercise, external checks

on the status of activities such as underwriting,

sending a decline letter, or extending a loan offer we

represent with the Boolean flags isApproved and

isFulfilled. The services which compare the internal

state and status of the loan application with other

business systems are more elaborate, but these flags

serve to illustrate how the class invariants for a loan

application reflect the business rules that define what

the correct values of an application may be at

different points in its lifecycle.

The repOk() method for the LoanApplication class

is seen below in Figure 2:

//enforce the class invariants of LoanApplication

 private boolean repOk(){

 if (state == LoanApplicationState.PreSubmitted){

 return true;

 }

 else if (status == LoanApplicationStatus.Incomplete){

 //only complete applications may be submitted

 return false;

 }

 //for decisioned loans - approval requires a loan amount

 //decline requires a $0.00 amount

 if (state == LoanApplicationState.Decisioned){

 if (isApproved){

 if(approvedAmount.getAmount() <= 0.00){

 return false;

 }

 }

 else{

 if (approvedAmount.getAmount() == 0.00){

 return false;

 }

Williams, Hopper, Stanton

5

 }

 }

 if (state == LoanApplicationState.Fulfilled){

 if (!isFulfilled){

 return false;

 }

 }

 return true;

 }

Figure 2: repOK for LoanApplication

The repOk() method shows that before an

application is in a submitted state there are no

constraints on the valid values of the fields. At this

stage of processing, applications may have missing

or incomplete data elements. Moreover, other fields

may have initial values that are potentially illegal

later on. Note that for any subsequent status, it is

illegal for an application to be incomplete; if a

decision has been made, the approved amount must

agree with the decision. Declined loans must have an

approved amount of $0.00, and approved loans must

have some positive loan value. Finally, if an

application is marked as fulfilled, the isFulfilled

indicator must agree that fulfillment activities are

complete.

VI. CONCLUSION

We have shown that Korat can be a powerful tool in

the validation of data structures. The quality of the

predicates and the finitization are critical factors in

the success of the Korat-driven testing effort,

however; and our interactive GUI finitization

technique added to the Korat toolkit provides a

significant enhancement to the finitization creation

process.

This business domain example serves to illustrate a

point from [1] that if a well designed object already

contains a mechanism for enforcing the class

invariants, like a repOk() method, then the

generation of valid candidates with the Korat

algorithm requires little additional effort on the part

of the programmer. If no such enforcement

mechanism has been implemented, there is a

substantial amount of work in preparing the

predicate method so that valid candidates can be

identified.

While this may be a trivial exercise for a well

defined abstract data type like a tree or a queue, for a

business domain object, it is likely that the class

invariants are poorly defined – if they are defined at

all. This is not to say that this makes Korat an undue

burden on the programmer; much rather, Korat

becomes useful when the business requirements are

understood well enough to define what the class

invariants are (as well as the preconditions and

postconditions for the methods on the class). The

effort required to generate tests with Korat is

essential in determining what to test in the first

place.

It is often the case in building a large system that all

of the details of the specification are not known up

front. This is where the power of our GUI

Finitization Editor becomes clear. A programmer

can begin with a somewhat useful finitization

generated from a weak class invariant and begin to

refine it over time to become more useful and more

well defined. Ultimately, the construction of better

predicates can be driven by the types of objects the

programmer selects in the interactive finitization

process; then the well-defined predicates can be

employed to better enforce the intended behavior of

the class. This serves to illustrate how GUI-driven

finitization improves the utility of Korat as an

iterative development tool.

Williams, Hopper, Stanton

6

VII. REFERENCES

[1] C. Boyapati, S. Khurshid and D. Marinov. Korat:

Automated testing based on Java predicates. In

Proc. International Symposium on Software

Testing and Analysis (ISSTA), pages 123-133,

July 2002.

[2] D. Marinov, A. Andoni, D. Daniliuc, S.

Khurshid and M. Rinard. An Evaluation of

Exhaustive Testing for Data Structures.

Technical Report MIT-LCS-TR-921, MIT

CSAIL, Cambridge, MA, September 2003.

[3] R. Harris and R, R. Warner. The Definitive

Guide to SWT and JFace. Apress. 2004.

[4] I. Forman and N. Forman. Java Reflection in

Action. Manning Publications. 2004.

W
il

li
am

s,
 H

o
p

p
er

,
S

ta
n
to

n

7

A
P

P
E

N
D

IX
 A

:
V

IS
U

A
L

 F
IN

IT
IZ

A
T

IO
N

 E
D

IT
O

R

V
iz
F
in
 v
e
r
.
1
.0

O
b

je
ct

F
ie

ld
F

ac
to

ri
es

D
at

a
ty

p
es

 t
h

at
 f

o
rm

 t
h

e

cl
as

s
d

o
m

ai
n

s

C
la

ss
D

o
m

ai
n

In
d

ex
es

 f
o
r

T
re

eS
iz

e
fi

el
d

C
la

ss
D

o
m

ai
n

In
d

ex
es

 f
o
r

N
o
d

e1
L

ef
t

w
it

h
 N

u
ll

C
la

ss
D

o
m

ai
n

In
d

ex
 a

t
h

ea
d

O
b

je
ct

F
ie

ld
s

